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Rates of Convergence of Gaussian Quadrature 
for Singular Integrands 

By D. S. Lubinsky and P. Rabinowitz 

Abstract. The authors obtain the rates of convergence (or divergence) of Gaussian quadrature 
on functions with an algebraic or logarithmic singularity inside, or at an endpoint of, the 
interval of integration. A typical result is the following: For a bounded smooth weight 
function on [-1,1], the error in n-point Gaussian quadrature of f(x) = Ix - y1-1 is O(n-2+28) 
if y = +1 and O(n' +) if y E (-1,1), provided we avoid the singularity. If we ignore the 
singularityy, the error is O(n1 '23(log n)8(loglog n)8t(1+) for almost all choices of y. These 
assertions are sharp with respect to order. 

1. Introduction. Much has been written about convergence of rules of numerical 
integration for integrands with integrable singularities inside or at the endpoints of 
the interval of integration. The first papers on the subject in recent years, by Davis 
and Rabinowitz [3] and Rabinowitz [11], established convergence of composite rules 
and Gauss rules for functions monotonic around certain singularities. Gautschi [7] 
verified Rabinowitz's conditions for the Fejer weights. Miller [9] introduced the idea 
of dominated integrability and proved that the latter condition was still sufficient for 
convergence of quadrature procedures. Feldstein and Miller [5] and El-Tom [4] 
obtained rates of convergence of compound rules on singular integrands. Chawla 
and Jain [1] and Rabinowitz [14] found the asymptotic form of the error of Gauss 
quadrature on certain functions with an algebraic singularity in their derivative. 

Osgood and Shisha [10] and others took up the subject of dominated integrability. 
Rabinowitz [13] showed that Gaussian quadrature would converge even on functions 
with singularities interior to the interval of integration, provided the nearest 
abscissa(s) to the singularity was omitted and provided a certain relationship held 
between weights and abscissas. Lubinsky and Sidi [8] used a generalized Markov- 
Stieltjes inequality to prove that omitting the closest abscissas from left and right to 
the singularity guaranteed convergence of Gauss quadrature, without requiring the 
above relationship between weights and abscissas. 

In this paper the authors use the same generalized Markov-Stieltjes inequality to 
investigate convergence rates of Gaussian quadrature for functions with a singularity 
at an endpoint of, or interior to, the interval of integration. This tool yields upper 
and lower bounds for the error when the integrand is absolutely monotone to the left 
of the singularity and completely monotone to the right. Furthermore, it yields 
asymptotic rates for functions which are the product of such a function and a 
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smooth function. We shall see that, under very mild assumptions on the weight 
function, the error in Gaussian integration of a function with an interior singularity 
which is algebraic of order 3 (respectively logarithmic) is O(n- 1?) (respectively 
O(n-1 log n)), provided only that we "avoid the singularity" by omitting the closest 
abscissa to the interior singularity. When we do not omit the closest abscissa, the 
error turns out to be O(n -1 I 23(log n)3(log log n))E6) any e > 1 (respectively 
o(n-1 log n)) for almost all choices of the singularity. All these results are sharp with 
respect to order. 

For endpoint singularities, we shall prove the following: If the interval is (-1,1) 
and the weight function is "comparable" to the Jacobi weight (1 - x)v(1 + x), 
then the error is O(n-2P-2+28) (respectively O(n-2P-2 logn)) for an algebraic 
singularity of order 3 at x = 1 (respectively a logarithmic singularity). 

We note finally that avoiding or ignoring a singularity using some standard rule is 
not necessarily the best method for numerical integration of a singular integrand. 
Thus many of the results in this paper are of theoretical, rather than practical, 
interest. 

2. Notation. Let (a, b) be a finite or infinite interval. Throughout let there be 
given a monotone increasing and right continuous function a: (a, b) -* R. We 
assume all the moments jabxj da(x), j = 0, 1, 2,. . ., exist. Then there exist orthonor- 
mal polynomials pn(x) = -ynHj=I(x - xnj), where yn > 0, n = 1, 2, .. ., that satisfy 

fpn(X)pm(x) da(x) = (, m n 

We assume that the zeros of pn are ordered so that a < Xnl < Xn2 < ... < Xnn < b, 
n = 1, 2,.... Further, we define the Christoffel numbers 

y= ( i l2()) j = 1,2, ... ,n; n = 1,2,..., 
k =0 

so that 

b~~~~~ 
(2.1) p(x) da(x) = E njP(xnj) 

a j=1 

whenever p (x) is a polynomial of degree at most 2n - 1. For any function f: 
(a, b) R, let 

I[f] = f(x) da(x), 
a 

n 
In[f ] = E Xnif(xnj), n = 1,2,..., 

.j=1 

E14f ] = If ] - In[f ] n = 1,2,..., 

provided these numbers are defined, the integral being a proper or improper 
Riemann-Stieltjes integral. Thus En[ f ] is the error in Gauss quadrature of order n 
for the integrand f. 

We shall frequently need to consider some fixed point y E (a, b) at which f(x) 
may, or may not, have a singularity. Throughout xc(n), XI(n), xr(n) denote the 
abscissas from { x,,1, x,12, ... ,Xn } which are, respectively, the closest to y, the closest 
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from the left to y, and the closest from the right to y. More precisely 

xC(n)y- yl = min lxny - yl: j = 1, 2,... n}, 

y - Xl(n) = min{y xn1: xnj < y}, 

Xr(n) -y = mint Xn -y: Xnj > y} 

If y < xn1, we take Xl(n) = a, and if y > xnn, we take Xr(n) = b. WhenX c(n) is not 
uniquely defined by the above, which is the case only when y is midway between 
xl(n) and Xr(n), we take Xc(n) = XI(n). We let 

In* If] = E Ixtljf(Xnj) 
j= I 

,j$ c(n) 

so that In* avoids the singularity by omitting the closest abscissa to it. Further, we let 

E,*[f] = I 1f]In [fl] 

Similarly, we define 
n 

In**[f] = L njf(Xnj) 
,j=l 

jot# (n), r(ii) 

so that In** avoids the singularity by omitting the closest abscissas from the left and 
right toy. Further, 

En**[fI = I[f ]-In[f 

We let Ac(n)' X(n)9 A r(n) denote the Christoffel numbers corresponding to xc(ni) X1(n), 

Xr(n), respectively. Similarly xc(n) ? 1' Ac(n) + 1 denote xn,c(n) + 1 and A n c(n) + 1 and so 
on. Note that xr(n) = XI(n) + 1 

It is worth comparing the definition of In*, I,** above to the ideas of avoiding the 
singularity used in Rabinowitz [13] and Lubinsky and Sidi [8]. The rule I,** above 
coincides with RA used in Theorem 1 in [13]. Further, In**is similar to K*, used in [8], 
except that the latter rule also includes the closest abscissas from the left and right to 
the singularity y, provided those abscissas are not too close to y, in the sense of 
(2.4B) in [8]. 

Definition 2.1. We shall say da(x) is bounded above and below near y if there 
exist positive constants m and M such that 

(2.2) m < a(X2) - a(xI) < M 
X2 -X 

for all xl, x2 in a neighborhood of y. 
The usual symbols 0, o, -, _ will be used to compare sequences and functions. 

For example, if (c,,), (dn) are sequences of real numbers, 

cII = O( dn ) lim sup lc,,/dn I < xc, 
17 -X 00 

Cn = o(d,,) lim C,,/dn = 0, 
11 - 00 

cil _- dt lim c7l/dl, = 1. 
11 -X 00 
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Cn '- dn K1 < c/dn < K2 for all large enough n, where K1 and K2 are positive 
constants. 

Definition 2.2. Let - be a real interval. 
(i) R(f) denotes the class of functions f(x) such that both f and If l are (possibly 

improperly) Riemann-Stieltjes integrable with respect to da(x) overf. 
(ii) If fis bounded and closed and if / is a nonnegative integer, C'[f] denotes the 

class of functions whose lth derivative is continuous in f with norm 1lf11 = 
max{ If(x) I: x Ef }. 

(iii) If - is bounded and closed andf E C[,],. C0[,], the modulus of continuity 
of f in-fis 

cwf (.f; e) = max{ If(xx)_- f(x2) I: Ix - x21 < E x1, x2 ef-} for any - > 0. 
We say fe Lip(O) in , where 0< 0 1 if wf(,; e) = O(e9), and we say fe 
Lip(O; -q) infwhere 0 > 0 and -j is real if wf (,; e) = O(e9Ilog El-71). 

Definition 2.3. Let , be a real interval. Let k be a positive integer. We shall say f: 
f - R is k-absolutely monotone in f (k-completely monotone in f) if f E R(f) 
and if 

(2.3) f()(x)>0, x e_,j= 0,1,2,...,k 

((-1)jf(')(x) > O,x j ,= 0,1,2,...,k). 
If f is k-absolutely monotone in f (k-completely monotone in f) for all positive 
integers k, we shall say f is absolutely monotone in f(completely monotone in f). 

3. Basic Lemmas. The Markov-Stieltjes inequality that we need depends on the 
following fundamental lemma: 

LEMMA 3.1. Let f be (m + 1)-absolutely monotone in (a, (] with strict inequality 
holding in (2.3). Let P(x) be a polynomial of degree at most m. Let 

Ml = total multiplicity of zeros off - P in (a, (], 

m2= total multiplicity of zeros of P in [, coo). 

Then ml + m2 < m + 1. 

Proof. Freud [6, Lemma 1.5.3] gives a proof for a = -cc. By substituting a for - c 
throughout his proof, we see the more general form above is true. [ 

Both the statement and proof of the generalized Markov-Stieltjes inequality below 
are essentially contained in Freud [6, pp. 32-33], but we restate and reprove it, 
because it is difficult to recognize from [6] the form of the inequality below. 

LEMMA 3.2. Let f(x) be (2n - 1)-absolutely monotone in (a, xnk) some n > 1, 
1 < k < n. Then 

(i) 
k-I 

YE Xnjf (Xnj) <-| f (x) dat(x). 
j=1 a 

(ii) If in addition f(x) is (2n - 1)-absolutely monotone in (a, Xnk], then 
k Xi 

L Xnjf (Xnj) > f (x) da(x). 
j=l 
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Proof. (i) Define a polynomial p (x) of degree < 2n - 2 by the 2n - 1 interpola- 
tion conditions 

(3.1A) p(xnj) 
f 
(Xnj)I j-k 1,29..,k - 1, 

_ j k 1,2,... ,k.- 1, 

(3.1B) P'(Xnj) -f(xnj)g j-=+12 k+2..k-.1, 

We shall assume initially that strict inequality holds in (2.3). Let ( E (xn,k-1' Xnk). 
Then, by (3.1A,B), f - p has m1 > 2k - 2 zeros in (a, (] and p has m2 > 2n - 2k 
+ 1 zeros in [t, c) . Thus m1 + M2 > 2n - 1 = deg(p) + 1. By Lemma 3.1, we 
have m1 + m2 < 2n - 1. Thus m1 = 2k - 2 and m2 = 2n - 2k + 1, and the only 
zeros of f - p and p in (a, (] and [t, xc) , respectively, are already listed in (3.1A,B). 
As all zeros of f - p in (a, (] are double zeros, it follows that f - p does not change 
sign in (a, {] for any ( < Xnk and hence f - p does not change sign in (a, xnk). As 
P(xnk) = 0, we deduce 

(3.2) f(x) > p(x), x E (a, xnk). 

Next, as t > xn,k-l was arbitrary, it follows that p(x) has 2n - 2k + 1 zeros in 
(xnkl- 1, X), these being listed in (3.1A,B). Since p(xn,k- 1) = f(xnk 1) > 0 and as 
p(x) has a simple zero at xnk and double zeros at xnj. j. k+ 1,k+ 2... ,n, it 
follows that p(x) changes sign at Xnk and 

(3.3) 0 >' p (x), xE[Xnk I o)- 

Then by (2.1), (3.2) and (3.3), and by (3.1A), 
n k-I 

ff(x) da(x) >f p(x) da(x) = E Xnjp(Xnj) = L X1nf(xn) 
-?? -?? j=1 j=1 

Finally, if strict inequality does not hold in (2.3), fE(x) = f(x) + -ex satisfies (2.3) 
with strict inequality for any E > 0. Applying the above inequality to JE and letting 
E -> 0 + , we obtain the more general inequality. 

(ii) is similar: One defines a polynomial P(x) of degree < 2n - 2 by 

((j)k-ff(x ) j-I 12 k, 

P'(Xnj) = ff'(xnj), j= 1,2,...,k - 1, 
x 0j- j =k + 1, k + 29 ... ., n , 

and uses Lemma 3.1 to deduce 

f (x) -< P (x), x E- (a, xnk], 

O P(x), xE [Xnk, ?). C 

For (2n - 1)-completely monotone functions, there is the following corollary: 

LEMMA 3.3. Let f(x) be (2n - 1)-completely monotone in (xnk, b) some n ?, 1, 
1 k < n. Then 

(i) 

L nijf (Xnj f (x) dak(x) 
j=k+l 1 Xik 
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(ii) If, in addition, f(x) is (2n - 1)-completely monotone in [xnk, b) , then 

L Xnjf (xnj) >-| f (x) da(x). 
j=k x,k 

Proof. (i) Make the change of variable x -- -x and let d/3(x) = -da(-x), so that 
/8(x) = a(b) - a(-x), x E (-b, -a). We denote the orthonormal polynomials, zeros 
and Christoffel numbers for d/3(x) respectively byPn Xnj and Xnj. It is easy to see 
Pn Pn= (-1) pn(-x), n = 1,2,..., and so Xny = -xn, n-+1; Xnj = Xn 1-j+ 1,- 

1, 2,.n; n = 1,2,.... Let g(x) =f(-x). We see g(x) is (2n - 1)-absolutely mono- 
tone in (-b, -xnk) = (-b, X n, - k + 1 Then Lemma 3.2(i) yields 

n - k 

YE 'njg( 'nj) -b 
| +()dBx 

nb 
- Xnjf(Xnj)<f| f(x) da(x). 

j=k+l Xnk 

(ii) follows similarly from Lemma 3.2(ii). El 
The following lemma on the asymptotic behavior of weights and abscissas will be 

useful in the sequel. 

LEMMA 3.4. Let (a, b) be bounded and assume da(x) is bounded above and below 
near y E (a, b). Then there exist positive constants C1, C2, C3, C4 and a neighborhood-f 
of y such that for all n andj, 

(3.4) (i) XnJ E => cI/n 1< Xnj+l - Xnj < C21n, 

GOi Xn1j Ez =>- C31n X nj- < C41n, 

(iii) c1/(2n) < max{y - Xl(n), Xr(n) -y Y< C2/n. 

Proof. (i) This is Theorem 111.5.1 in Freud [6] with a linear transformation of 
(a, b) onto (-1, 1). 

(ii) By the classical Markov-Stieltjes inequality 

(Szego [18, p. 50] or Freud [6, p. 29]). Further as da(x) is bounded below near y, 
Theorem 11.2.4 in Freud [6] shows that, for large n, there are as many xnj near y as 
we like. We deduce from (2.2) and (3.4) that, for all xnj in a neighborhood-f of y, 

stj 
4 

M(Xn,j+l - Xn,j) < 2Mc2/n = C4/n. 

Next by Theorem 1.4.1 in Freud [6], and by (2.2), 

Anj = inf{f P2(x) da(x): deg(P) < n - 1 and P(xnj) = 1} 

> m inf{f1 pP2(x) dx: deg(P) < n - 1 and P(xnj) = I 

where (y - 6, y + 6) is a suitable neighborhood of y. Now consider the transforma- 
tion u = -1 + (x - (y - 6))/6 which maps x E [y - 6, y + 6] onto u E [-1,11. 
Each polynomial P(x) of degree < n - 1 satisfying P(xnj) = 1 corresponds to a 
polynomial P*(u) of degree < n - 1 in u satisfying P*(u.j) = 1 where un, = u(xnj). 
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Then 

Anj > (mS)inf{ f(P*(u))2 du: deg(P*) < n - 1 and P*(uni) = 1} 

- (m6)Xn(du; Unj), 

using Freud's notation for the Christoffel function of the weight du over [-1,1]. By 
Theorem V.6.8 in Freud [6], for the weight a'(x) 1 in [-1, 1], 

XA(du; uj) = 7(1 - U21)2/n + o(1/n), 

where if xnj is restricted to some closed subinterval of (y - 3, y + 3), then unj lies 
in some closed subinterval of (-1, 1) and so the o(1/n) term is uniform in such xnj 
by the theorem. This yields Anj > c3/n for all n, j such that Xnj lies in some 
neighborhood of f. 

(iii) Now max{y - X,(n), Xr(n) -y} > (Xr(n) - Xf(n))/2 and for large n, Xr(n) 

X1(n,+,1 and Xl(n) both lie in the neighborhood fof y. Hence (xr(n) - Xl(n)) > c1/n. 
Similarly 

max{y - X/(n), Xr(n) -y1 < (Xr(n) - Xl(n)) s- c2/n. 0 

4. Interior Singularities, Part 1. In this section, we investigate the asymptotic 
behavior of En[f ] where f(x) = Ix - yI-8 or -logIx - yI. First, however, we estab- 
lish our basic error estimate which may be applied to functions with a singularity on 
either one, or both sides of y. 

LEMMA 4.1. Let f(x) be (2n - 1)-absolutely monotone in (a, y) and (2n - 1)- 
completely monotone in (y, b). Then 

(i) 

(4.1) fi f(xf ) da(x) < En*[f] f r(n)+f(X) da(x). 
xl(n) XI(n) - 1 

(ii) If y / Xc(n) 9 

(4.2) rfn(x) da(x) - 
r(n) 

(x) da(x). 
xl(n) jj=l(n) l(n) 

(iii) Ifj is the integer such that]j E {l (n), r(n)} \ {c(n)}, then 

(4.3) En*[f ] = En**[ f ]- Anjf(xnj). 

(iv) If y = c(n), 

(4.4) 0 < E *[f] Xr(n) f(x) da(x). 
XI(n)- 1 

Proof. (i) By Lemma 3.2(i) and 3.3(i), respectively, we have 

l(n)-i 

, Anjf (Xn) < lnf x) da(x), 
j=l a 

n b 

j= r) njf(Xnj) f (x) da(x). 
j= r(n )+1 Xr(n) 
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Adding, we obtain 

l*f ];I[f f- ( fX) dat(x), 

from which the lower bound in (4.1) follows. Similarly, Lemma 3.2(ii) and 3.3(ii) 
yield 

n b 

I\Xn jf (Xn j ) > - f ( x) da(x ) 
j=r(n)+ 1 + 

Adding, we obtain 

f**] I[f] JXr(n) +f (x) daX () 

and the upper bound in (4.1) follows. 
(ii) Since y xc(n), we have XI(n) < y < Xr(n) and Lemmas 3.2(ii) and 3.3(ii) yield 

l(n) 

E' nj t(Xn) >1 f(x)() da(x), 
11 ~~~~~ b 

Xnjf (Xnj) > f (x) da(x) 
j=r(nl) ,,, 

4I1[ f ] > I41] fr]-X"(f)f (x) da(x), 

which yields the upper bound in (4.2). The lower bound follows from the identity 
r( n) 

En[f= En**[f X njf(xnj) 
.j=(ti) 

and the lower bound for E,*[ f ] in (4.1). 
(iii) follows immediately from the definition of En* and En**. 
(iv) Sincey = xc(n) we havey = Xl(n), and by Lemmas 3.2(i), (ii), 3.3(i), (ii) 

1 1(n)-i 

f t(x) da (x) 'fL j(Xn <; xzf (x) da (x 
al j=l a 

f f(x) da(x) Xn sf(Xnj') < f(x) da (x). 
Vr(n) j=r(n7) 

Adding, we obtain (4.4). El 

LEMMA 4.2. Lety, c, d E (a, b),y 7f d and z = (y - c)/(y - d). 
(i) Let f(x) be monotone increasing and positive in (a, y) and let c, d e (a, y). 

Then 

(4.5) (1/z + I)-' < fi(t)du/fi(u)dus -(z + 1). 
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(ii) Let f (x) be monotone decreasing and positive in (y, b) and let c, d E (y, b). 
Then 

(1/Z + 1) 1 f (u) du/f f(u) du < (z + 1). 

Proof. (i) We first prove the second inequality in (4.5). If z < 1, that is, if d is not 
closer to y than c, this inequality is trivial. So assume z > 1, and let k be the largest 
integer < z. We can then partition the interval [c, y] into k + 1 intervals [cj, cj +?, 
j= ,1,2,...,k, where co = c, Ck+1 = y and c+1 - c1 = y - d, j = 1,2,. . .,k. Then 
each interval [cj, cj+ I] has length at most y - d. Further, as f(x) is increasing in 
(a, y), we see 

V ~~~k C 
f f(u) du= L Iff(u) du < (k + 1) ff(u) du < (z + 1) ff(u) du. 

C 1=0J= j 

By symmetry of c, d, we obtain also 

ff(u) du < (1/z + 1) ff(u) du 

and (4.5) follows. 
(ii) is similar. El 
We can now prove a general theorem for "2-sided" singularities: 

THEOREM 4.3. Let (a, b) be a finite interval and y E (a, b). Let da(x) be bounded 
above and below near y. Let f(x) be absolutely monotone in (a, y), completely 
monotone in (y, b) and let f(y) = 0. Further assume f(x) grows at roughly the same 
rate on both sides of y as x -- y, that is 

(4.6) f(y-u) -f(y + u) asu -0 +. 

Let An = frL1/n7f(x)dx,n = 1,2, 3,.... Then 

(i) E**[f ] - An, 
(ii) E*[f I = ?(An) 

(iii) En[f] = O(un) - Ac(n)ff(xc(n)) 
andA c(n) n. 

Proof. The condition (4.6) entails that for some positive constants C5, C6, c, 

(4.7) C5 < f (y - u)/f (y + u) < C6 all u E (0, e). 

(i) By (2.2) and (4.1), for large n, 

E**[f] M{f f (x) dx + f f(x) dx 

< M([(y X,(n)-1)n + 1] f(x) dx 

+ [ (Xr(nl)+ l - y) n + 1] f?/ f (x) dx} 

(by Lemma 4.2(i), (ii)) 

< M{[2c2 + 1] +[2c2 + 1]/c5}1 f(x) dx, 
I'-a1/7 

by Lemma 3.4(i), (iii) and by (4.7). 
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Further,by (2.2) and (4.1), for large n, 

E*f*[f ] > m( 
Y 

f(x) dx + J nf (x) dx) 

> m( [((Y - x,(n)))n) + fj f (x) dx 

+[((Xr(n) Y) n)flV ? Y1f+?/nf(x) dx} 

by Lemma 4.2(i), (ii). Here if y = XI(n), the first term in the { 4 may be interpreted 
as 0. From Lemma 3.4(iii) and from (4.7) we deduce 

En*[f] f m [ 2/cl + 1]-'min{ 1, 1/c6 f (x) dx. 

Thus we have shown 
(4.8) K1min{1, 1/c6) < En**[f]/ln < K2(1 + 1/C5), 

where K1, K2 are independent of n and f as M, m, cl, c2 are and where c5, c6 depend 
on f (as in (4.7)), but are independent of n. This establishes (i). 

(ii) By (4.3) and (i) above, we deduce 

En*[f ] = O(An))-njf(Xnj) 

where j = j(n) E {l(n), r(n)) \ {c(n)}. By Lemma 3.4(iii), Ixnj -YI > c1/(2n). By 
monotonicity of f, if xnj < y, we see 

f(xnj) f(y - c,/(2n)) < (2n/c,)f f(x) dx 
y- cl/(2n) 

< (2n/cj)(cj/2 + 1)f 1(x) dx 
y-l/n 

by Lemma 4.2(i). Then by Lemma 3.4(ii), for large n, 

Anjf(xnj) < (2C4/CJ)(cj/2 + ')An 

and so En*[f] = O(An). Similarly if Xnj > y. 
(iii) follows from the identity 

En [f] = E*[f -XCf(n)f(XC(f)) 

and from Lemma 3.4(ii) which shows AC n-l. C1 
Thus the rate of convergence to 0 of the error in Gaussian quadrature, where the 

singularity is avoided using In* or In", is determined by the asymptotic behavior of 
I. As a first corollary, we have: 

COROLLARY 4.4. Let (a, b) be a finite interval and y e (a, b). Let 

f(x) IX - YI- x e (a, b) \{y}, 

where 0 < 8 < 1. Assume da(x) is bounded above and below neary. Then 
(i) En**[ f ]n-1A 

(ii) E[f] = (n 8 

and there exists 6S E (0, 1) such that, whenever 6 E (80, 1), we have 
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(iii) For those positive integers n for which y / xc(n), 

Enl[f = -c(n)lx(n) Y| + 0(n1t ) 
(4.10) = (n1Ix)I6 

where A c(n) - n 

Proof. First note that f(y - u) = f(y + u) = juj6, and so (4.7) holds with 
C5 = C6 = 1. Further f is absolutely monotone in [a, y) and completely monotone in 
(y, b], while 

.t = f} f (x) dx = n-l+a/(1 - 3). 
Y-l/n 

(i) By (4.8), as c5 = c6 = 1, 

(4.11) K1/(I - 3) < En**[f ]/n -1+8 < 2K2/(1 - ), 

where K1 and K2 are positive constants independent of f and n.. 
(ii) The first part follows from Theorem 4.3(ii). To prove (4.9), we use (4.3). If 

j E {l(n), r(n)} \ {c(n)), Lemma 3.4(ii), (iii) yield 

nj'lXnj - Y/ < (C4/n)(cl/(2n)) , K3 

where K3 = C4 max{1, 2/cl ) is independent of n and 3. Then by (4.3) and (4.11), 

{Kl/(l - 8) - K3) < E*[f]/n -1+ < 2K2/(1 - 3), 

and for 8 close enough to 1, say for 8 e (o, 1), the term in { } is positive as K1 and 
K3 are independent of 3. 

(iii) The first part follows from Theorem 4.3(iii). To show (4.10), it suffices to 
show n a= O(IXc(n) -yV-6) but this follows from Lemma 3.4(iii) which shows 
IxC(n) - Y c2/n- Cn 

Next, we have a corollary for logarithmic singularities. 

COROLLARY 4.5. Let (a, b) be a finite interval and y E (a, b). Let 

f(x)= { loglx - yi x E (a, b)\{y, 

Assume da(x) is bounded above and below neary. Then 

(i) En**[f] n-' log n. 

(ii) En*[f]= O(n-' log n). 
(iii) For those positive integers n for which y + xc(n) 

En [f ] = -Ac(n)loglxc(n) -Y + O(n-1log n) 

= O(n-1logxc(n) -YI), 

where Ac(n) - n- 

Proof. Let d be a positive constant chosen so that g(x) = f(x) + d, x E (a, b), is 
nonnegative in (a, b). We see g is absolutely monotone in (a, y) and completely 
monotone in (y, b). Further En[d] = 0 and, using Lemma 3.4(ii), we see En**[d] and 
En*[d] are O(n-1). By applying Theorem 4.3 to g and using the linearity of 
En, En*, En**, we obtain the result as before. [l 

As a final corollary, we have the following analogue of Theorem 2 in Rabinowitz 
[13], for the case wherey = cos(lTp/q) with p/q a rational number. 
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COROLLARY 4.6. Let (a, b) = (-1,1) and da(x) be a Jacobi weight given by 
a'(x) = (1 - x)v(1 + x)8, x E (-1,1), where /3, P = + 1/2. Let y = cos(rp/q), 
where p/q is a rational number in (0, 1). 

(i) If 

f(x)- fx -yI 
6 

X E (-1,1)\{y}, 

where 0 < 3 < 1, then En[f] =0(n 6). 
(ii) If 

f(x)= f-loglx-yi, x(-1,1)\{y}, 
0, ~~x = iv, 

then En[f] = O(n-1 log n). 

Proof. When y = xC(n)I we have f(xc(n)) = 0 and so En[f] = E*[f]. When 
y 0 xc(n) we have 

En[f] = E* [ f ]-Xc(n)f(xc(n)), 

where Xc(n) - n-1. It is then evident that both (i) and (ii) follow from Corollaries 4.4 
and 4.5 provided we can show that there is a positive constant C7 independent of n 
such that Iy - xC(n) I > c7/n if y # xc(n). Now for Jacobi weights of the above form, 
the abscissas xnj are known explicitly (Szego [18, p. 124, (6.3.5)]). From those 
explicit formulae, we may write xC(n) = cos(k r/(2n + i)), where k is an integer 
depending only on n and where i = 0 or i = 1. We have of course k/(2n + i) p/q 
as n -x 00. Then, for large n such that y 7f xc(n), 

IY - x (n) = 2 sin(77( 2n? i + P )/2sin(( 2nk 
P 

> sin(r pl/q) k _ p 
2n +i q 

> sin(Qrp/q)/((2n + 1)q) > C71n, 

where C7 = sin(,rp/q)/(4q) and we have used the fact that Ikq - p(2n + i)l > 1, 
being a nonzero integer. El 

Lemma 4.1 was stated and proved for finite or infinite intervals. Much as above, 
one can show that for the Laguerre weights, a'(x) = xve-, En**[Ix - y-v6] - nI - ` 

and for the Hermite weight, a'(x) = eX2, E**[Ix - yl-v] - n-(' -6)/2. Similar re- 
sults are possible for weights on the infinite interval studied by Freud in the 1970's. 
The method of Lemma 4.1 may also be applied to functions which are "piecewise" 
completely monotone or absolutely monotone in (a, b) and to functions with more 
than one singularity or with one-sided singularities. 

5. Interior Singularities, Part 2. We now prove results of a different character to 
those of Section 4. For example, we show that, for almost all choices of y, 

EljIx -yl-y ] = o(n-126(logn)6 (loglogn)E 6), 

where E > 1 and that this result is substantially the best possible. This is the 
analogue of Theorem 3 in Rabinowitz [13]. 
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THEOREM 5.1. (i) Assume da(x) is bounded above and below near each y interior to 
the finite interval (a, b). Then, given e > 1, there is a set d, in (a, b) of linear Lebesgue 
measure zero with the following property: 

(5.1) En[ Ix-YI-1 = o(n-1+28(log n) (loglog n)E) 

for all 0 < 8 < 1, whenevery e ge. 
Hence if 8 < 1/2, En[x - y1-6] --* 0 as n - oo for almost ally E (a, b). 
(ii) Assume (a, b) = (-1, 1) and da(x) is a Jacobi weight given by a'(x) = 

(1 - x)'(1 + x),8, x E (-1, 1) where /B, v = + 1/2. Then there is a set G'in (-1, 1) of 
linear Lebesgue measure zero with the following property: 

-En[jx -yV-] > cn-1+28(logn)"(loglogn)" 

for infinitely many integers n and for all 0 < 8 < 1, whenever y e 4'. Here c is a 
positive constant independent of n, y and S. 

Hence if 8 > 1/2, En[jx - yj1] -* 0 as n -x oo for almost ally E (-1,1). 

Proof. (i) Fix E > 1. Let pn = n-2(logn)'`(loglogn)- for all large enough in- 
tegers n, and let 

n 
n-~ U (xnkpfxlkf) Xn U (X"k Pn, Xnk + Pn) 

k=i 

for all such integers n. Further let 
= {x E ( a, b ):x E Jn for infinitely many n}. 

Note that fn has linear measure at most 2npn. Since E,n 2npn < 0, Lemma 1 in 
Sprindzuk [17, p. 2] ensures that 4 has linear measure zero. Further, if y ? 6, we see 
IX,(n) - Yj > pn for all large n, and by (4.10), En[lx - yl-j] = O(n-pn-,j) from which 
(5.1) follows. 

(ii) The proof is based on the fact that, for the given Jacobi weights, the zeros xnj 
are known explicitly (Szego [l8,p. 124, (6.3.5)]). Suppose, for example, v =1, = -1/2. 
Then taking account of Szego's different ordering of the zeros, 

Xn,n-j+l = cos((j - 1/2)7T/n), j = 1,2,...,n. 

Now writing y = cos(O7T) where 0 E (0,1), we see 

IY -Xn,n-j+ 1 = Icos(00 ) - cos(( - 1/2)/n)I < w10 -(2j - 1)/(2n)I- 

By Theorem 4 in Sprindzuk [17, p. 11] with 

P(k) = 2k and Am = m-1(log m) 1(loglog m)1, 

all large enough m, we see that, for almost all 0 E (0, 1), 

10 - (2j - 1)/(2n) I < An/(2n), j = j(n), 

for infinitely many n. It follows that, for almost ally E [-1, 11, 

IY - XC(nfl < nn-2(logn) l(loglogn) 1 

for infinitely many n. Applying Corollary 4.4(iii) and Lemma 3.4(ii), 

-En[Ix -YV a = Ac(n)IXc(n) -YI- + O(n-+ 8) 

> (c3/2)n-1 +28 (log n ) 8 (log log n )6 

for infinitely many n and for almost all y E [-1, 1]. LI 
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Note that any Jacobi weight da(x) is bounded above and below near each 
y E (-1, 1). Further note that (log log n)"6 in (5.1) may be replaced by (log log n),6 
(log log log n)"6 and so on. Similar remarks apply to part (ii) of the above theorem. 
The proof of the following result is similar to that of Theorem 5.1. 

THEOREM 5.2. Assume da(x) is bounded above and below near each y interior to the 
finite interval (a, b). Then there is a set of linear Lebesgue measure zero (even further 
of Hausdorff dimension zero) such that En[-loglx - yl] = O(n-1 log n) whenever 
y Z g. 

6. Endpoint Singularities. For endpoint singularities, there is no need to omit 
abscissas in Gaussian quadrature for singular integrands. Thus we restrict ourselves 
to the study of En[ f ], and in this section f(x) is usually (1 - x)-8 or -log(1 - x). 

LEMMA 6.1. (a) Let f (x) be (2n)-absolutely monotone in (a, b). Then 

(6.1) max(f f(x) da(x) nnf(Xnn) E[f] f(x) da(x). 
fn nxn 

(b) Let f (x) be (2n)-completely monotone in (a, b). Then 

(6.2) max{| f (x) da(x) -Anlf (xnl),O ? < Enf] < f (x) da(x). 

Proof. (a) By Lemmas 3.2(i) and (ii), 
n-1 x n 
1 /Xnj I(Xnj) "" | (x) dot(x) , E: Xnjf (Xnj) 

j=l j=l 

In I[ f ]-knnf (Xnn) <;I[f ]-|f (x) dot(x) -< Ij[ f] 
xni 

and (6.1) follows if we can show also I[f ] >? In[f] This follows either from Lemma 
111.1.5 in Freud [6] or Problem 9 in Szego [18, p. 375]. 

(b) is similar. El 
Unfortunately, the behavior of Ann, b - xnn, xnn - xn,n-1, and so on, have not 

been thoroughly investigated for general weights and there seems to be no analogue 
of Lemma 3.4. Thus we are not able to prove results as general as those in Sections 4 
and 5, but can prove results for weights comparable to a Jacobi weight. 

LEMMA 6.2. Let (a, b) be a finite interval. Let a*: (a, b) -- R be a monotone 
increasing, right continuous function. Assume there exist positive constants m and M 
such that 

(6.3) m < a(X2) 
- 

a(x1) M a* (X2) - a*(x,) M 

for all x1, x2 in (a, b). Let x* denote the largest zero of the nth orthogonalpolynomial 
for da*. Then 

m b-xnn M 
M b-x* m 

Proof. Now x,* = maxt fabxP(x) da*(x)/labP(x) da*(x)}, the maximum being 
taken over all polynomials P(x) of degree < 2n - 2 that are nonnegative and not 
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identically zero in (a, b). See Theorem 7.72.1 in Szego [18] for one case of this 
well-known result. The analogous formula holds for x,,,, with da replacing da*. Then 

b-x*n = min b(b - x)P(x) da*(x)/ jP(x) da*(x)} 

> min (b(- x)P(x)m da(x)/ bP(x)Mda(x)} 

= (m/M)(b -Xnn) 

in each case the minimum being taken over all polynomials P(x) satisfying the 
previously mentioned conditions. Further we have used (6.3). Similarly we obtain 
b-X*n n (M/m)(b- nn El 

We can now prove 

THEOREM 6.3. Let (a, b) = (-1, 1). Assume a(x) is absolutely continuous in (-1,1) 
and that, for some positive m, M and some v, /3 > -1, we have 

(6.4) m < a'(x)/(a*)'(x) < M, x e (-1,1), 
where (a*)'(x) = (1 - x)'(1 + x)l3 is a Jacobi weight. Then 

(a) En[(1 - x)-8] = O(n-2v-2+2) if v -8 > -1 and 3 > 0. Further if v < -1/2, 
there exists positive q such that 

En[(' - x)8 - n-2v-2+28 whenever 3 e (1 + v - ,1 + v). 

(b) En[-log(l - x)] = O(n- 2v-2 log n). 

Proof. Note first that if x'* 1?1 is the (n - 1 + I)th zero of the orthogonal 
polynomial of degree n for do*, Theorem 8.1.2 in Szego [18] shows 

lim narccos(xn*,n-1+) = iv, 
n -4QQ~~~~~~~~~~~~~~~~~~~~~~~~~~ l 

n cc 

where jl,, is the Ith positive zero of J/(x), the Bessel function of the first kind of order 
v. As usual, we have taken account of Szego's different ordering of the zeros. We 
deduce from the Maclaurin series for cos x that 

(6.5) lim n 2(1 - X*, ll) = j,/2, if / is fixed. 
n -xc 

Then, by (6.4), (6.5) and Lemma 6.2, 

(6.6) (M) j2v + o(1) < n 2(1 -Xnn) < ( m )j2v + o(l). 

Further by (6.4), by Theorem 1.4.2 in Freud [6] and by Problem 10 in Freud [6, 
p. 1321, we see 

(6.7) Ann , c8n- 2v-2 provided v < -1/2, 

where c8 is independent of n. 
(a) By (6.1), (6.4) and (6.6), 

0 < En(I - x) | < 21'1M(I + PV- 8)-1(1 - Xnl+) 
- = 0(n-2-2+28) 

If P < -1/2, then (6.1), (6.4), (6.6) and (6.7) yield 

En[(1 - x)-8| > (m/2)(1 + P - 3)-1(l - Xnn)'+P 8 - c8n-2p-2(1 -xn) 
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and the constant in [ ] is positive for 8 close to 1 + P, since c8, m and M are 
independent of S. O 

(b) is similar to the first part of (a). 
For Jacobi weights, we obtain the following more precise result. 

THEOREM 6.4. Let (a, b) = (-1, 1) and a'(x) = (1 - x)'(1 + x)A, x E (-1,1), 
where P, /3 > -1. Let JV(z) be the Bessel function of the first kind of order v and jl, be 
its first positive zero. 

(a) Let 0 < 8 < 1 + P. Let 

s = 2-f( jj2/2)-l-+?n2+2-28 (I + P - S)En[(1-x) ] 

Then 

(6.8) max{0,l - Co2()(I + v - < liminfsn < limsupsn S 1, 
n - oo n oo 

where 

(6.9) co(v) =2/(jj1,JP (jjj)) 

(b) Let 

t =2-P-1(j2 /2)-l -"n2v +2(log n)-'l( + v)En[-log(l - x)]. 

Then 

(6.10) max {0, 1 - c2(v)(1 + v)} < lim inf tn lim sup tn < 1. 
n - oo n - oo 

Proof. (a) Now 

(6.11) f (1 - x)6dda(x) 2fi(l - xnn)l+?va/(1 + P -) 

- 2#(Ij2/(2n2))l+? 8/(1 + P - 8), 

by (6.5). Further (15.3.11) in Szego [18, p. 350] shows that 

(6.12) Xnn (1 - Xnn)_ 2v+?+f1(jl,/2)2v { 1(Iiv)IV2n2v2( ji2/(2n2))O. 

Then (6.8) follows easily from (6.1), (6.11), (6.12) and (6.9). 
(b) is similar. O 
By computing co(v) from tables, one observes that the lower bound in (6.8) is 

positive only for 8 close to 1 + P. Further, the lower bound in (6.10) seems to be zero 
for all nonnegative P, but it is not clear what happens as v -- -1. 

In exactly the same way as above one can investigate singularities at the left 
endpoint of the interval of integration. Further, as Lemma 6.1 was valid for infinite, 
as well as finite intervals, one can use it to investigate En[x6]x for example, for the 
Laguerre weights on (0, oo). 

7. Interior Singularities for More General Functions. We now extend the results of 
Sections 4 and 5 to the function f(x) = O(x)g(x), where g(x) is smooth and 
O(x) = Ix - yl-K or +(x) = -loglx - yl. Throughout, without further mention, we 
assume (a, b) is a finite interval and y E (a, b). 
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LEMMA 7.1. Let O(x) E R(a, b) be continuous in (a, b)/{y} and (y - x)4(x) E 
C[a, b]. Let g e C[a, b], and let k be a nonnegative integer such that g(k)(y) exists. 
Forj= 1,2,...,k + 1,let 

(7.1) h1(x) = (x)[g(x) - E 
g (x -Y) x E [ a, b]. 

Then 
(a) 

En[pg] = Ej[p]g(y) + E g( En[(x-y)'o] +En[hk+lI 
1=l 

providedy 7 Xc(n). 
(b) 

(7.2) E*pg] = E*[p]g(Y) + E g(I ) E[(x-y)'p] .+ En[hk+lI 
1=1 

+Xc(n)hlj(Xc(n)). 

(c) 

E** [ 9]= E** [ ]g(y) + E g (y) E [( -y)'+] + En [hk+l] 
1=l 

r(n) 

+ E ;\njhl(Xni) 
j=l(n) 

Proof. (a) follows immediately from the definition of hk+ 1 
(b) From the definition of En*, En and h k+1' we see 

E*,g] = E,p*[]g(y) + k g()En[(x-y + En[hk+l( 
1=l 

+ [= ? g 1! (xc(n) - y)'0(xC(n)) + hk+l(Xc(n)) 

which reduces to (7.2) since 

k_ g(I)(y) 
h1(x) - E / (x - y)'(x) + hk+l(x). 

1=l 

(c) is similar to (b). O 
Next we need an error estimate for Gaussian quadrature of functions whose 

derivatives (except aty) eventually obey the sign patterns of derivatives of absolutely 
monotone or completely monotone functions. 

LEMMA 7.2. Assume da(x) is bounded above and below neary. Assume 4 Ee C[a, b] 
is infinitely differentiable in (a, b) \ { y } and that there exist positive integers p, q and 
N such that 4, e CNl[a, b] and such that, forj > N, 

(-i)P4(/)(x) > 0 forallx E (a, y), 

> 0 for allx e (y, b). 

Then En[4] = O(n"-) where y = max{1, N - 1). 
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In particular, we may choose 4(x) = (x - y)NIx - yl-8 (O < 8 < 1) or 4(x) = 

(x- y)N loglx - ylfor allpositive integers N. 

Proof. Let 

X(X) 
a x <Y, 

( ? y x < b . 
Let P(x) = j2f7 X b1(x - a)'/j! withbo, bl,. . . , bN-1 chosen so large that 

{(-i)ip+(x) + P(x)}~()> 0, x e (a, y),j = 0,1,2,. ..,N - 1. 

Let f1(x) = X(x){(- 1) P(x) + P(x)}, x E (a, b). We see both XP(x) and f1(x) are 
absolutely monotone in (a, y) and (trivially) completely monotone in (y, b). Then 
by Lemma 4.1(i), 

IEn *[X4,]I = IEn**[(fi - XP)(-1 )] I < En*[[fi] + En**[XP] 

< f|(x) da(x) + P(x) da(x) 

< (11411 + 211PI)M(y -X(n)-1) 

(by (2.2) and where the norms are over [a, b]) 

< 2MC2(11411 + 211P11)/n = O(n-1) 

by Lemma 3.4(i), (iii). Similarly IEn**[(l - X)4ll = O(n-1) and hence E,**[] = 

O(n-1). Finally 
r(n) 

EnI[4] = En*[,] - E Xnjf(xnj) = O(n-) - O(n-1)11II = 0(n-1), 
j=l(n) 

by Lemma 3.4(ii). 
Next, standard estimation [2, p. 257] yields 

IEn[4flI < {2f da(x) min 114j - Pll = o(n N1), 

by Jackson's Theorem (Rivlin [16, Theorem 1.5]) since 4 Ee CN-l[a, b]. 
If, for example, 4,(x) = (x - y)NIx - yV-6, we see 4(j)(x) > 0, x e (a, y), j = 

N,N+ 1,N+ 2,...,(_1)N+j?(ij)(X)> 0,x E (y,b),j=N,N+ 1,N+ 2,.... L 
Next we need a lemma on the Lipschitz class of the functions h1 and h2 given by 

(7.1). 

LEMMA 7.3. Let g E C[a, b] and 4(x) = Ix - yl-, x E [a, b]\ {y}, where 0 < 8 
< 1. 

(i) Let g e Lip(l - 3) in [a, b] and g E Lip(l) near y. Let h1 be given by (7.1). 
Then h1 E Lip(l - 3) in [a, b]. 

(ii) Let 0 < e < 8 and let g E Lip(l - e) in [a, b]. Further let g' exist near y and 
g' e Lip(S - e) neary. Let h2 be given by (7.1). Then h2 e Lip(l - e) in [a, b]. 

Proof. We first prove (ii). By hypothesis, there exist positive N and qj such that 

(7.3) Ig(u) - g(v)I < NIu - VI1-, a < u, v < b, 
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Recall h2(x) = 4(x)[g(x) - g(y) - g'(y)(x - y)]. We shall assume a < u < v < y 
and consider three cases: 

Case I: a < u < v < y - r. Now k(u) = k(v) + 4'(w)(u - v), where o lies be- 
tween u and v, so 

(7.5) Ih2(u) - h2(V)I 

= /p(v)[g(u) - g(v) - g'(y)(u - v)] 

+5'(()(U - v)[g(u) - g(y) - g'(y)(u - A)] 

I /v - yl-/ [Nlu - v/l1- + Ig'(y)/ /u - vl] 

+v aI- y'/llv - uI[2//g// + /g'(y)l(b - a)] 

(by (7.3)) 

< /u - V|t {q-[N + Ig'(y)/(b - a)'] 

+S,q-"-'(b - a)4[211g/l + Ig'(y)/(b - a)] } 
= Klu -v1. 

Case II: y - qj < u < v < y andy - v > v - u. By (7.5) and differentiability of g 
in [y - 71, Y], 

/h2(u) - h2(v)/ = I40v)[(g'(1) - g'(y))(u )] 

+S5 (W)(U - v)[(g'(W2) - g'(y))(u - y)] 

(where co lies between u and v and w2 lies between u and y) 

< Iv - y/6NIu - y/6-1/u - vI + 8Iv - y-|1Iu - yIN/u - yl-Iu -y 

< N/u - v/{26-/v - ?y/ + 821+6- 1V - Y/-?} 

(as /u - yl < (y - v) + (v - u) < 2(y - v)) 

< 6N/u -vl' 

(as /v - yl > /u - v/). 
Case III: y - q < u < v < y andy - v < v - u. For some o between u andy, 

Ih2(u)I = /(u)(g'() - g'(y))(u - y)/ < N/u - yll-? 

(by (7.4)) 

< 2N/u - 
VI- 

(as /y - ul < /y - v/ + Iv - ul < 2/v - ul). Similarly Ih2(v)/ < N/u - v/1-, and so 

Ih2(u) - h2(v)/ < 3NIu -vi". 

From Case I, it follows that h2 E Lip(l - e) in [a, y - q] and from Cases II, III, 
it follows that h2 E Lip(l - e) in [y - q, y]. Thus h2 E Lip(l - e) in [a, y], and 
similarly h2 e Lip(l - e) in [y, b] and so in [a, b]. This completes the proof of (ii). 

The proof of (i) is very similar, but easier: one again considers Cases 1, 11, III as 
above and uses 

/g(u) - g(v)l < N/u - vl-8, a < u, v < b, 

/g(u)-g(v)/ < N/u - vl, y - q < u, v - y + ? . O 
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Roughly the above lemma states that if g has "smoothness" r in [a, b] and 
"smoothness" r + 8 near y, then h1 or h2 has "smoothness" r in [a, b]. Similarly, for 

(x) = -logIx - YI, one can prove 

LEMMA 7.4. Let g E C[a, b] and p(x) = -loglx - Yl, x E [a, b]\ {y}. 
(i) Let g e Lip(I; -1) in [a, b] and g E Lip(l) neary. Let h1 be given by (7.1). Then 

h1 E Lip(I; -1) in [a, b]. 
(ii) Let g e Lip(I; -1 + 71) in [a, b] for some 0 < 7 < 1. Further let g' exist neary, 

and g' E Lip(O; 71) near y. Let h2 be given by (7.1). Then h2 E Lip(I; -1 + 71) in 

[a, b]. 

We can now prove our main result on avoiding the singularity. 

THEOREM 7.5. Assume da(x) is bounded above and below near y. Assume g E 
C[a, b]. 

(i) Letf(x) = Ix - yj-3g(x), x E [a, b]\ {y}, where 0 < 8 < 1. 
(a) If g E Lip(l - 8) in [a, b] and g E Lip(l) neary, then 

En**[f]= O(n-'+), En*[f] = (n-'+") 

(b) If, further, there exists 0 < e < 8 such that g E Lip(l - e) in [a, b] and 
g' E Lip(S - e) neary, and if g(y) 7 0, then 

En**[f ] - g(y)n-'+'. 

Further En*[ f] g(y)n'+ a if 8 is close enough to 1. 
(ii) Let f (x) = (-loglx -yl)g(x), x e [a, b] \ {y }. 
(a) If g E Lip(I; -1) in [a, b] and g E Lip(l) neary, then 

En**[f] = O(n'-logn), En*[f] = O(n-'logn). 
(b) If, further, there exists 0 < q < 1 such that g E Lip(I; -1 + 71) in [a, b] and 

g' E Lip(O; 71) neary, and if g(y) 7 0, then 

En**[f] - g(y)n-llogn. 

Proof. (i) Let O(x) = Ix -yl-, x E [a, b]\ { y}. 
(a) By Lemma 7.1(c) with k = 0, 

r(n) 

En**[f] = En**[O]g(y) + En[h1] + E ;kn;h1(Xn;). 
j=l(n) 

Here En**[k] - n-1+6 by Corollary 4.4(i). Further h1 E C[a, b] and ;kl(n)' r(n) = 

O(n-1) by Lemma 3.4(ii). Finally, as h1 E Lip(l - 8) in [a, b], by Lemma 7.3(i), 
and by Jackson's Theorem [16, Theorem 1.5, p. 23], 

IEn[h1II < (2fbda (x)~ min Ilh1 - Pll =0n16. 
(a /) deg(P) < 2n - 2 

Thus En**[f]= O(n-'+6). Similarly Lemma 7.1(b) may be used to show En*[f]= 
O(n -' +16). 

(b) By Lemma 7.1(c) with k = 1, 

(7.6) En**[f] = En**[O]g(y) + g'(y)En[(x - y)>] + En[h2] 
r(n) 

+ E ;\njhl(Xnj) 
j=l(n) 



RATES OF CONVERGENCE OF GAUSSIAN QUADRATURE 239 

By Lemma 7.2 with A(x) = (x - y)o(x) = (x - y)Ix - yl-j, one sees 

E,[(x - y)0] = O(n-1). Further, by Lemma 7.3(ii), h2 E Lip(1 - e) in [a, b], and 
as usual this implies Ej[h2] = 0(n-"') = o(n"1+). Finally, by Lemma 3.4(ii), we 
see 

r(n) 

E X;njh(xnj) = O(n-1). 
j=l(n) 

Thus all terms in the right member of (7.6), other than the first, are o(n-1 8). As 
En**[] - n-1+, the result follows. Similarly for El*[f ] 

(ii)(a), (b) are similar to (i)(a), (b), respectively. C1 
If, for example, g E C'[a, b] and g' E Lip(,q) in [a, b] for some qj > 0, then all 

the restrictions of Theorem 7.5(i)(b) or (ii)(b) on g are satisfied. Thus, under fairly 
weak assumptions on the distribution da and on the function g, En**[ f ] - n - +6. 
The conditions on g in Theorem 7.5(i)(b) and (ii)(b) can be weakened without 
weakening the result, but the formulation becomes more complicated and is omitted. 

The following result analyzes the error when the singularity is ignored. 

THEOREM 7.6. (i) Assume da(x) is bounded above and below near each y interior to 
[a, b]. Then, given e > 1, there is a set 4, in (a, b) of linear Lebesgue measure zero 
with the following property: If g E Lip(1) in [a, b], then 

E [Ix -yl-jg] = O(n-1+23(log n) (loglog n) 

for all 0 < 8 < 1 whenevery ? ?. 
Hence if 3 < 1/2, En[x -yl-yjg] - 0 as n -x oo for almost ally e (a, b). 
(ii) Assume (a, b) = (-1,1) and da(x) is a Jacobi weight given by a'(x) = 

(1 - x)v(1 + x)A, x E (-1, 1), where /3, v = ? 1/2. Then there is a set 6G'in (-1, 1) of 
linear Lebesgue measure zero with the following property: If g E Lip(1) in [a, b], then 

IE [Ix -yl-g] I > clg(y)In`?+23(log n) (loglog n) 

for infinitely many integers n and all 0 < 8 < 1 whenever y Z 4'. Here c is a positive 
constant independent of g, n, y and S. 

Thus, provided the set of zeros of g has linear Lebesgue measure zero, and if 
8 > 1/2, En [Ix - yVg] -g 0 as n oo for almost ally E [a, b]. 

Proof. By Lemma 7.1(a), with k = 0, 

En[Ix - Ylg] = g(y)En[lx - ] + En[h1], 

where h1 is given by (7.1) and ?(x) = Ix - yl-. Using Lemma 7.3(i), we see 
h1 E Lip(1 - 8) and hence En[h1 ] = O(n - 1`) for all y E (a, b). The statements (i), 
(ii) then follow from Theorem 5.1(i) (ii). C1 

In a similar fashion, one can use Theorem 5.2 to prove the following result for 
ignoring a logarithmic singularity: 

THEOREM 7.7. Assume da(x) is bounded above and below near each y interior to 
(a, b). Then there is a set 6of linear Lebesgue measure zero (even further of Hausdorff 
dimension zero) with the following property: If g E Lip(1) in [a, b], then 

En [(-logx -yj)g] = O(n-1log n) whenevery ? . 
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8. Endpoint Singularities for More General Functions. In extending the results of 
Section 6 to more general functions, we shall assume throughout that (a, b) = (-1,1) 
and that a(x) is absolutely continuous there. Further, we shall assume that da is 
comparable to a Jacobi weight, that is, there exist positive m, M and real P, P > -1 
such that 

(8.1) m < a'(x)/{(1- x)v(1 + x)A} 
8 

M, x E (-1,1). 

LEMMA 8.1. Let 4 Ee C[-1, 1] be infinitely differentiable in [-1, 1], and assume there 
exist positive integers p and N such that 

(-1)P+4/)(x) > 0, x E [-1,1),j = N, N + 1, N + 2,.... 
Then 

En[f]= 0(n -2(l'+l)). 

In particular, we can choose + (x) = (1- x)-8 or + (x) = -(1 - x)N log(l - x). 

Proof. By choosing a suitable polynomial P(x) of degree at most N - 1, we can 
ensure that f (x) = (- 1) P(x) + P(x) is absolutely monotone in [-1, 1) . Then, by 
Lemma 6.1(a), by (8.1), and as En[P] = 0 for large n, we see 

IEn[fll = En[f] < M21'llfIIf' (1- X 

= 0(( - Xnn)l) = 0(n-2(v+1) 

by (6.6). 

Finally if, for example, A (x) = (1 - x)N-, we see 

(_1)N#(Ni)j(x) > 0, x E [-1, 1),j = 0, 1, 2,.... CI 

The above lemma is by no means best possible for integrands of low continuity. 
For example, for the Legendre weight, Chawla and Jain [1, Eq. (18), p. 95] proved 
En[(1 - x)-8] = O(n-4+23), whereas the above result gives only En[(1 - x)-] = 

(n -2). We can now prove our main result for endpoint singularities. 

THEOREM 8.2. (i) Let 0 < 8 < min{1, 1 + P}, and let 1 be the smallest integer 
> 2(1 + v - 8). Let g E C'[-1, 1] and assume there exists ) > 0 such that g ')(x) E 

Lip(S; 71) near 1. Then 

En [(1 - x) ag] = 0(n 

(ii) Let k be the smallest integer > 2(1 + P). Let g E Ck[_1, 1] and assume there 
exists ? > 1 such that g(k)(x) E Lip(O; 71) near 1. Then 

En[(log(l -x))g] = O(n-2(1 + ")log n). 

Proof. (i) Let 

G(x) = g(x) - E gj(( (x - 1)', x E [-1,1). 
j=O 

We see G E C'[-1, 1]. Further, 

G(x) {g(x) - E g( (x - P 

={g(,) ( u) - g(,) (1) } (x - 1)l/! 
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where u lies between x and 1. Then we deduce that for x close to 1, and for some 
positive constant K, 

j0(x)G(x)j s Klx - 1-lx - 1j"6llogx -11 i-j/l! 

= O(jx - ll'llogix - 11 1-'). 

It follows that (4G)(x) has a zero of order 1 at x = 1 and further that 

I(OG)")(x) I= O(jlogjx - 11 I) -* 0 as x -* 1-. 

Hence also (OG)(1)(1) = 0 and GEG E C'[-l, 1]. As usual, Jackson's Theorem yields 

En[(pG] = o(n-') = O- 2(1+P-8) 

Finally, using the definition of G, we see 

En [(I- x) g] = E I) En [(1- x)ji + EJ[OG] 
j=0 O 

= O(n-2(v+1-8)) + O(n-2(p+l)) + O(n-2(1+vp-) 

by Theorem 6.3(a) and Lemma 8.1. 
(ii) is similar. O 
If, for example, da(x) is the Legendre weight da(x) dx in [-1,1] and ( = 1/2, 

the above result shows En[(1 - x)-1/2gJ = O(n-1) provided g e Cl[-1, 1] and g' e 

Lip(1/2; 71) near x = 1. It seems certain that the restrictions on g above can be 
substantially weakened. 

Similarly one can discuss singularities at the left endpoint of the interval of 
integration. The methods of Sections 6 and 8 may also be applied to integrands with 
a singularity at ox and for Laguerre or Hermite weights. 

9. Conclusion. In this paper, upper and lower bounds for the error in Gaussian 
integration were obtained, using a generalized Markov-Stieltjes inequality. These 
estimates lead to asymptotic results for the error in Gaussian integration whether the 
singularity is ignored or avoided. They also suggest derivative-free correction terms 
for numerical integration of singular integrands of certain types. This idea, which is 
not investigated here, could improve existing methods for evaluating singular 
integrals. 
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